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False bifurcations in chemical systems: canards

By Bo PeEng, ViLM0os GASPART AND KENNETH SHOWALTER

Department of Chemistry, West Virginia University, Morgantown,
West Virginia 26506-6045, U.S.A.

A canard is a false bifurcation in which the amplitude of an oscillatory system may
change by orders of magnitude while the qualitative dynamical features remain
unchanged. Recent theoretical considerations suggest that canards are characteristic
of fast—slow dynamical systems and are associated with the stable and unstable
manifolds of the phase plane. An alternative characterization of canard behaviour is
proposed involving the crossing of an inflection line by a limit cycle growing out from
an unstable stationary state. The inflection line comprises the locus of points at
which the curvature of any phase plane trajectory is zero. The role of the inflection
line in the onset of canard behaviour as well as in the continuity of the transition is
examined in a two-variable model for the oscillatory EOE reaction, the Auto-
catalator, and the two-variable Oregonator. The approach is also applied to the van
der Pol oscillator, the system in which canard behaviour was first examined.
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1. Introduction

A canard is associated with a dramatic change in the period and amplitude of an
oscillatory system within a very narrow range of the control parameter. Because the
qualitative dynamical features remain unchanged during the transition, it is a false
bifurcation: limit cycle oscillations occur before and after the canard. The
transformation of small-amplitude, high-frequency limit cycle oscillations to large-
amplitude, low-frequency ones occurs without a significant change in the vector field.
For example, the character as well as the number of steady states in the phase space
remain unchanged as a system passes through a canard.

Benoit et al. (1981) were first to characterize canards in an investigation of
oscillation amplitude of the van der Pol system. (The term canard technically refers
to middle-amplitude limit cycle solutions exhibited during the transition; here, it will
be used interchangeably with canard transition.) Diener & Poston (1981) and Diener
(1984) subsequently pointed out that canard behaviour is a general feature of fast—
slow dynamical systems. A canard cycle, the middle-sized limit cycle solution, closely
follows the stable part of the slow manifold (defined by the nullcline of the fast
variable); on passing the knee of the S shaped nullcline, however, it continues to
remain in the neighbourhood of the slow manifold, which is now unstable. Kaas-
Petersen & Brons (1985) showed that this unusual sequence is due to two manifolds
associated with the slow manifold: M, the stable (attracting) manifold and M, the
unstable (repelling) manifold. The relative positions of the stable and unstable
manifolds with respect to the knee of the slow manifold determine whether small- or
large-amplitude oscillations occur. The canard point can be defined as the critical
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value of the control parameter at which the stable and unstable manifolds merge as
one, the canard manifold.

Canard behaviour has also been reported in simple models for chemical oscillations,
for example, in different modifications of the Autocatalator (Merkin ef al. 1986, 1987 ;
Gray et al. 1988; Scott & Tomlin 1990) and in a two-variable Oregonator (Bar-Eli &
Brons 1991). The characterization of canard transitions in the Oregonator by Bar-Eli
& Brons followed the theory of Kaas-Petersen & Brons (1985). They also showed that
the same interplay of stable and unstable manifolds accounts for excitability
exhibited by the Oregonator (Bar-Eli & Noyes 1987).

Canard behaviour has also been found in a two-variable model of the oscillatory
iodate—sulphite—ferrocyanide reaction (Gdspar & Showalter 1990), discussed in §2. A
characterization involving the interplay of stable and unstable manifolds proves to
be inappropriate in this case, thus providing motivation for an alternate approach to
characterize canards, presented in §3. By using the new approach, canard behaviour
in the two-variable iodate—sulphite—ferrocyanide model is analysed in §4. The same
approach is followed in analyses of the Autocatalator in §5 and the two-variable
Oregonator in §6. In the latter, canard behaviour of an unstable limit cycle is
characterized. Canard behaviour is revisited in the classic but non-chemical van der
Pol system in §7, and application of the approach is summarized in §8.

2. Canard behaviour in a two-variable model of the
Edblom-Orban-Epstein (EOE) reaction

The first oscillatory chemical system based on the classic iodate—sulphite clock
reaction (Landolt 1886) was discovered by Edblom et al. (1986). They found that the
Landolt reaction becomes oscillatory in a continuous-flow, stirred tank reactor when
ferrocyanide is added to the reactant stream. (This system is referred to as the
oscillatory EOE reaction.) A ten-variable, empirical-rate-law model based on
component processes proposed by KEdblom ef al. (1986) describes the detailed
chemistry of the oscillatory reaction (Gaspdr & Showalter 1987). This model was
subsequently reduced to a four-variable description (Gaspar & Showalter 1990),
which retained essentially all of the dynamical features found in experiments
(Edblom et al. 1986 ; Gaspar & Showalter 1987). The four-variable model was further
reduced to a minimal two-variable scheme. Transitions from steady state to
oscillatory behaviour were investigated in the minimal model, revealing a saddle-
loop bifurcation and canard behaviour associated with a supercritical Hopf
bifurcation.

The four-variable model comprises one reversible and four irreversible steps
(Gaspar & Showalter 1990):

A+Y=X, (2.1]
X Y, [2.2]

2Y > 7, [2.3]
Z+X ->3Y, [2.4]
Z->. [2.5]

The variables and corresponding species of the chemical reactions are A = S0,
X = HSO;, Y = H" and Z = I,. A singular perturbation analysis of the associated
system of differential equations allows the number of independent variables to be
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Figure 1. Transition from steady-state to oscillatory behaviour in the two-variable model for the
oscillatory EOE reaction. Supercritical Hopf bifurcation occurs at critical input concentration
Y¥ ~ 4.40 x 1073 m; vertical lines at ¥y &~ 3.68 x 1072 M show onset of canard transition. Amplitude
of oscillations and steady-state pH calculated using the Livermore Solver of Ordinary Differential
Equations (Gear 1971; Hindmarsh 1980). Values of rate constants and parameters: k, =
50x 109 mtst, k, =81%x10°s", k,=6.0x10"2s", k,=75x10"M", k, =23x10° Mg},
ks =30x10's ky=15%x103s" 4, =9.0x10% M.

reduced by eliminating the two fastest variables, 4 and Z. The result is a minimal
two-variable system:

dX/dt =k, A Y —(k_y+ky+k, Zs+ ko) X, (A1)
AdY/dt = —k, A Y+ (k_y+ ky+ 3k, Z) X — 2k, Y2+ k(Y —Y), (A2)
where A, and Z; are functions of X and Y,
kX +kyA,
A= kyY+ky, ’ (43)
Z ky 12 (A4)

ST ke X+ kot kg

The rate constant k, is the reciprocal residence time of the reactor (flow rate/volume),
and 4, and Y represent the inflow concentrations of 4 and Y.

Figure 1 shows a supercritical Hopf bifurcation and associated canard behaviour
in the two-variable model as the acidity of the reactant stream is varied. For
comparison with earlier experimental and computational results (Gdspar &
Showalter 1987, 1990), the stationary state pH and maximum and minimum of the
pH oscillations are plotted. Small-amplitude oscillations emerge on decreasing the
value of Y, below the critical Hopf value, Y§ &~ 4.40 x 107 M. The amplitude grows
smoothly until ¥, &~ 3.68 x 107® M, where there is a sharp increase resulting in large-
amplitude oscillations ranging between pH 2.5 and 10.0 (see figure 2a). The
transformation of the small-amplitude oscillations to large-amplitude relaxation
oscillations occurs virtually discontinuously on variation of the bifurcation
parameter. The transition was located with a resolution of 107® M in the value of Y;
however, middle-amplitude oscillations ranging over eight orders of magnitude
could not be resolved. Further increasing the resolution in Y, resulted in spurious
solutions ; the middle-amplitude solutions could not be found and, in fact, seem to be
missing. The vertical lines in figure 1 therefore do not imply the existence of middle-
size solutions, but rather indicate an apparent discontinuous jump in amplitude at
the canard. We return to this dynamical feature in §4.

Phil. Trans. R. Soc. Lond. A (1991) e
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Figure 2. (a) Phase plane of two-variable model for the oscillatory EOE reaction showing limit
cycles for small-amplitude ( , (i)) and large amplitude oscillations (-——, (ii)), immediately

before and after the canard transition. The corresponding values of the bifurcation parameter are
Yh =3.685671 x 107 M and Yl = 3.685669 x 10~ M. Two nullclines calculated at the intermediate
value Y3 = 3.685670 x 10~ m are shown by dotted lines. (b) Enlarged region of the phase plane
shown in (a). (¢) Further enlargement of phase plane with the inflection line (calculated at Y?)
shown by the dotted curve.

Figure 2a shows small and large limit cycles calculated at slightly different values
of Y,. Also shown in the figure are the nullclines, depicted by dotted lines. The
extremely small variation in the value of Y, for the two limit cycles does not result
in a detectable change in the nullclines; therefore, the average of the Y, values was
used in determining their location (by the binary bisection method). Although the
nullclines seem to run together in the upper part of the phase plane, an enlargement
reveals that the Y-nullcline lies slightly to the right of the X-nullcline.

Figure 2a and the enlargement in figure 26 show that the large limit cycle follows
the X-nullcline at low pH values and the Y-nullcline at high pH values. This
feature indicates that the two-variable model of the EOE reaction is not a typical
fast—slow variable system. Moreover, in the region where the small limit cycle
encircles the steady state, shown in figure 2b, no extrema are exhibited in either of
the nullclines. Consequently, a theoretical approach based on the interplay between
stable and unstable manifolds cannot be applied in analysing this system.

Figure 2b indicates that both limit cycles follow a seemingly common path before
they suddenly depart. There is, however, an important qualitative difference in the
trajectories: a change in sign of the curvature occurs in the large limit cycle, while
no such change is observed in the small limit cycle. In the following section we show

Phil. Trans. R. Soc. Lond. A (1991)
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how changes in sign of the curvature of the trajectories define an important feature
of the phase plane, the inflection line, which, in turn, leads to an alternative approach
for understanding canard behaviour. We return to canard behaviour in the EOE
reaction in §4.

3. The inflection line
Consider the ordinary differential equations for a general two-variable system :
dX/dt = f(X, Y), (la)
dY/dt =g(X,Y). (10)

For any particular functions fand g, equations (1) define a set of trajectories, fully
occupying the XY phase plane. Of course, the evolution of the system is confined
to a particular trajectory for any given initial conditions. Along such a phase path,
the value of one dynamical variable can always be expressed as a unique function of
the other, with time becoming an implicit variable (Andronov et al. 1966).

In the case of the two-variable EOE model, the canard transition is associated with
a change in sign of the curvature of the limit cycle trajectory (figure 2b). In general,
the curvature x of a phase plane trajectory is defined as the rate of turn of the
tangent with respect to the arc length s along the trajectory (Korn & Korn 1961).
The curvature can easily be calculated from the first and second derivatives of ¥
with respect to X:

k = dd/ds = (d2Y/dX?)/ (14 (dY/dX)?):. (2)

Choosing a direction, say the positive Y axis, defines a given trajectory as concave or
convex if the second derivative (and thus curvature k) is positive or negative
respectively. This sign convention is used here in characterizing the curvature of a
trajectory. Corresponding X and Y values that satisfy « =0 in (2) define the
inflection line in the phase plane. Trajectories passing through this line (defining zero
curvature) undergo a change in curvature from concave to convex or vice versa; i.e.
the crossing point is an inflection point.

Consider a limit cycle formed at a supercritical Hopf bifurcation. The closed
trajectory increases in size as the bifurcation parameter is varied, growing out
approximately parabolically from the stationary state. At the same time, the
inflection line also changes its position in the phase plane in a smooth and continuous
manner. The growing limit cycle and inflection line may or may not touch as the
bifurcation parameter is changed. If they do, the limit cycle trajectory asymp-
totically approaches a tangent to the inflection line. On crossing, it then diverges
away with opposite curvature. The result is a sudden change in the size of the limit
cycle, giving rise to canard behaviour. The critical value of the bifurcation parameter
at which the limit cycle and the inflection line first touch is defined as the canard
point.

It is important to point out that canard behaviour is associated with the first
crossing of the inflection line by a limit cycle trajectory. Since a newly formed
periodic orbit is approximately circular, the first crossing must occur tangentially
and, thereby, result in a fundamental alteration of size and shape. Of course,
crossings of the inflection line by a limit cycle must occur in pairs; therefore, the first
crossing is always associated with another crossing at some other point on the limit
cycle.

Phil. Trans. R. Soc. Lond. A (1991)
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(a) (b) ()

Figure 3. Relative curvatures of limit cycle trajectory and inflection line after first crossing. Limit
cycle trajectory before crossing also shown for comparison. (¢) Curvatures of inflection line (--) and
limit cycle trajectory ( ) are of same sign beyond first crossing. (b) Curvatures are of opposite
sign. (c¢) Limit cycle trajectory crossing a straight inflection line.

This characterization of canard behaviour does not require a special structure of
nullclines in the phase plane. Whether or not a scheme results in a typical fast—slow
dynamical system, canard behaviour is always associated with the crossing of an
inflection line by an expanding limit cycle. Moreover, the continuity of a canard
transition can be ascertained by comparing the curvature of the inflection line itself
(k;) with that of the trajectory (k) beyond the crossing point. To illustrate this point,
three cases in which the limit cycle trajectory is convex («x, < 0) after the crossing are
described. (An analogous argument can be made when the limit cycle is concave after
the crossing.) A key element in the argument is that crossings must occur in pairs.

(@) For the configuration in figure 3a, «; and «, have the same sign (both curves
are convex) after the crossing point, and the limit cycle trajectory soon recrosses the
inflection line. The distance between the first and second crossings varies smoothly
with the bifurcation parameter; in principle, the trajectory may recross the inflection
line arbitrarily close to the first crossing point. This canard transition is therefore
continuous.

(b) If the inflection line is concave (k; > 0) after the crossing point, as in figure 3,
the convex trajectory cannot recross arbitrarily close to the first crossing point. Now,
as the bifurcation parameter is varied, the limit cycle trajectory diverges away from
its original course after first touching the inflection line. The canard transition in this
case is therefore discontinuous.

(c) When the inflection line is straight after the crossing point, as in figure 3¢, the
situation is analogous to case (b): the canard is discontinuous.

It should be noted that the effect of a discontinuous jump in amplitude, as in case
(b) or (c), may be small since the second crossing can occur close to the first.

No canard behaviour is exhibited if a growing limit cycle does not intersect an
inflection line in the phase plane. This may happen if the inflection line lies too far
away from the stationary state undergoing Hopf bifurcation or if additional
bifurcations take place before the growing limit cycle can touch the inflection line.
The inflection line may also drift away from a growing limit cycle, thereby
preventing a crossing. An example of a limit cycle expanding without canard
behaviour is described in §5.

Phil. Trans. R. Soc. Lond. A (1991)
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4. Canard behaviour in the two-variable model of the EOE reaction

The region of the phase plane depicted in figure 26 is enlarged in figure 2¢ with the
inflection line indicated by the dotted curve. The locus of points making up the
inflection line was determined with the value of Y, used for the large limit cycle (see
Appendix A for equation used in bisection method calculation); a calculation with
the value of Y, for the small limit cycle yields a line indistinguishable from that
shown in the figure. On decreasing Y, the small limit cycle grows to become tangent
with the inflection line; any further decrease results in the trajectory crossing the
line and diverging away to trace out the larger limit cycle. The inflection line after
the crossing point (to the right) bends slightly upward. Since «; and «, are of opposite
sign beyond the crossing point, the canard transition is discontinuous (case b),
explaining why the middle-amplitude solutions were missing in the numerical study.

A feature relevant to the existence of canard behaviour in the EOE reaction is the
plateau behaviour found in the experimental and modelling studies. The calculated
large-amplitude oscillations are interrupted by a short plateau at pH = 4.38,
coinciding with the inflection line crossing. Although small-amplitude oscillations
associated with a Hopf-canard transition have not been found in experimental
studies (Edblom et al. 1986; Gaspar & Showalter 1987), plateau behaviour is
consistently observed at pH = 4.25, indicating that the sudden onset of large-
amplitude oscillations occurs via a canard transition. The canard possibly occurs too
close to the Hopf bifurcation in the experimental system for the small-amplitude
oscillations to be resolved. This explanation is consistent with the experimentally
observed noisy fluctuations close to the transition to oscillatory behaviour (Gaspdr
& Showalter 1987). In other studies of experimental systems, the sudden appearance
of large-amplitude oscillations has usually been attributed to subcritical Hopf
bifurcations. The analysis of the EOE reaction shows that the sudden onset of large-
amplitude oscillations may also occur via a supercritical Hopf bifurcation and
associated canard transition.

5. Canard behaviour in the two-variable Autocatalator

In 1986 Gray & Scott proposed a simple scheme called the Autocatalator as a
prototype for oscillatory behaviour in isothermal chemical systems. The two-
variable scheme, in which canard behaviour has also been found (Merkin et al. 1986,
1987 ; Gray et al. 1988; Scott & Tomlin 1990), is related to the minimal model of the
EOE reaction discussed above. The Autocatalator is comprised of four irreversible
steps:

P>A, [5.1]
A->B, [5.2]
A+2B->3B, [5.3]
B->C. [5.4]

The decay of precursor P to generate A is assumed to occur very slowly, allowing its
concentration to be considered constant. Introducing aldimensionless time1 scale 7 =
kyt and the dimensionless variables a = (ky/k,) (k;/k,)2A and B = (k,/k,):B for the

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. (¢) Maximum and minimum of Autocatalator limit cycle oscillations as a function of
bifurcation parameter p with ¢ = 0.1. Supercritical Hopf bifurcations occur at g = 1.3281 and
2.4972. (b) Phase plane showing the limit cycle ( ) and inflection line (- - --) at g = 2.0, near
the maximum amplitude of oscillations in f.
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Figure 5. (¢) Maximum and minimum of Autocatalator limit cycle oscillations as a function of
bifurcation parameter x4 with ¢ = 0.01. Supercritical Hopf bifurcations occur at x4 = 1.0206 and
9.8467. (b) Enlargement of canard transition at 4 & 1.034. (¢) Phase plane showing small-amplitude
limit cycle ( , curve (i)) and large-amplitude limit cycles (———, curves (ii) and (iii)) immediately
before and after the canard transition. Dotted curves show inflection line. Values of parameters:
= 1.0340, p' = 1.0342, " = 1.0343 and p'™ = 1.0341.

concentrations of intermediates A and B, respectively, yields a two-variable system
of differential equations:
da/dr = y—a—ap? (B 1)
edf/dr = a+ap*—pf, (B 2)
where ¢ = k,/k, and u = (k,/k,) (ky/k,): P, are dimensionless parameters.
Figure 4a shows steady-state and minimum and maximum values of £ during limit

Phil. Trans. R. Soc. Lond. A (1991)
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cycle oscillations as a function of u for € = 0.1. The oscillations grow in a smooth,
nearly parabolic manner to full amplitude from either of the supercritical Hopf
bifurcations; canard behaviour is not observed for these parameter values. Shown in
figure 4b are the limit cycle at 4 = 2.0, near the maximum oscillatory amplitude, and
the corresponding inflection line (see Appendix B). It is clear that the inflection line
lies far away from the limit cycle even at maximum amplitude. Because the limit
cycle contracts on further increasing u, a crossing of the inflection line cannot occur
and canard behaviour is not exhibited.

In contrast, when ¢ = 0.01, a sharp canard transition is exhibited at the lower limit
of oscillations and moderate canard behaviour at the higher limit (figure 5a). A blow-
up of the sharp canard is shown in figure 5b, and figure 5¢ shows the relative positions
of the limit cycles and inflection line during the transition. The motion along the
small limit cycle, which almost touches the inflection line, is counterclockwise.
With a slight increase in u, the trajectory crosses the line and large-amplitude
oscillations appear (curves (ii) and (iii)). Unlike the previous example of the EOE
system, however, «; and « are of the same sign beyond the crossing point (case (@) in
figure 3); therefore, the canard transition is continuous. It is likely that discontinuous
transitions are also exhibited for some values of the parameters, although such
behaviour was not found in this study.

6. Canard behaviour of unstable limit cycles in the
two-variable Oregonator

The Oregonator was proposed by Field & Noyes (1974 a, b) as a minimal model for
the oscillatory Belousov-Zhabotinsky (BZ) reaction (Belousov 1959; Zhabotinsky
1964; Field & Burger 1985). The original three-variable scheme consists of five
irreversible reactions:

A+Y >X+P, (6.1]
X+Y 2P, [6.2]
A+X>2X+7Z, [6.3]
2X > Q, [6.4]
Z—>fY, [6.5]

where the variables are X = HBrO,, Y = Br™ and Z = Ce(1V). The concentration of
the reactant A = BrOj is typically considered to be constant, and P and Q represent
kinetically unimportant (in this model) oxybromine species such as HOBr. The
parameter f is a stoichiometric factor relating the regeneration of Y to the
consumption of Z. Introducing the dimensionless time 7 = k, At and the dimensionless
variables x = (ky/k, A) X, y = (ky/k; A)Y and z= (kyky/k,k,A*)Z for the con-
centrations of intermediates X, Y and Z yields a three-variable system of differential
equations:

ogdx/dr = y—ay+x—ox?, (C1)
dy/dr = fa—y—uy, (C2)
0dz/dr = x—=z, (C3)

where o = 2k, k,/k, ky, 6 = k,A/ks and o = k,/k, are dimensionless parameters.
In reducing the model from three to two variables, we follow Bar-Eli & Noyes
(1987), applying the original set of rate constants (Tyson 1977): k4 = 02871,

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 6. () Suberitical Hopf bifurcation in the Oregonator. Unstable steady state (——) becomes
stable and unstable limit cycle (——) is formed, which grows until it touches the stable limit cycle
(——). (b) Canard transition of the unstable limit cycle within the stable periodic orbit. For small-
amplitude unstable limit cycle f = 1.947; for large-amplitude stable and unstable limit cycles and
for the inflection line, f = 1.947336. (c) Blow-up of the lower region of phase plane shown in (b).

ky=2x10"M1s ! kA =1x10°s"" by =5x10"m st and ky = 1 8. With these
values, the dimensionless parameters a, 6 and o become 1x 1075, 0.2 and 2 x 107*
respectively. We utilize this reduction and these rate constants in order to connect
with another study of canard behaviour in the Oregonator (Bar-Eli & Brons 1991).
These parameter values permit the fast variable x to be expressed as a function of y:

a(y) = (1—y++/((1—y)*+4ay))/ 2. (C4)

The two-variable reduction of the Oregonator provides a typical fast-slow
dynamical system (Tyson 1977). For the parameter values used here, oscillatory
behaviour both appears and disappears at subcritical Hopf bifurcations on varying
the bifurcation parameter f (Bar-Eli & Noyes 1987). In a recent study, Bar-Eli &
Brons (1991) examined canard behaviour occurring near a supercritical Hopf
bifurcation, exhibited when the value of k, 4 is increased to 1000. They located the
stable and unstable manifolds in the phase plane and determined the value of the
canard point in an analysis based on Diener’s theory (1981, 1984) of canard
behaviour in fast—slow systems.

The original rate constants are used here to investigate canard behaviour of an
unstable limit cycle within a stable one, as shown in figure 6a. On increasing the
value of f, the unstable focus is transformed at a suberitical Hopf bifurcation (f* =~
1.755) into a stable focus surrounded by an unstable limit cycle. The expanding
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unstable limit cycle merges with the stable limit cycle ; the confluence of the two limit
cycles results in the disappearance of periodic solutions in a global bifurcation. The
sharp increase in the amplitude of the unstable periodic solutions is a clear indication
of a canard transition.

Figure 6b shows stable and unstable limit cycles near the onset of canard
behaviour and subsequent confluence of the limit cycles. The unstable limit cycles in
figure 6a—c were calculated by integrating the differential equations with time
decreasing rather than increasing. A similar technique was used to characterize
saddle-loop bifurcations of stable and unstable limit cycles in a two-variable
Oregonator with flow terms (Gaspar & Showalter 1988; Gaspdr et al. 1990).

The small unstable limit cycle approaches the inflection line (see Appendix C) from
higher y values, as shown in the enlargement of the phase plane in figure 6¢. Within
the resolution shown in the figure, the crossing point seems to occur approximately
midrange in the value of z. The curvature of the inflection line also seems to change
sign in the same region; however, the calculations do not permit any conclusion
concerning the continuity of the transition.

7. Canard behaviour in the van der Pol system

Canard behaviour was first investigated in the van der Pol oscillator (Diener 1981,
1984). Insights into the role of the inflection line can be gleaned from this non-
chemical example. We examine here the same equations used in the earlier studies
(Diener 1984 ; Kaas-Petersen & Brons 1985).

The van der Pol oscillator can be expressed as a second-order, ordinary differential
equation:

ex’+(2*—1)a’ +x—c =0, (D 1)

where z” and x” denote the first and second derivatives with respect to time.

Following Kaas-Petersen & Brons (1985) in casting (D 1) into a system of two first-
order equations, we have

edx/dt = (y —2x®+ ), (D 2)

dy/dt = c—x. (D 3)

When ¢ is small, x is the fast variable and its nullcline constitutes the slow manifold
of the system.

Figure 7a shows that when ¢ = 0.1 small-amplitude oscillations develop at a
supercritical Hopf bifurcation at ¢* = 1. Harmonic oscillations are transformed into
relaxation oscillations at the canard, occurring at ¢ & 0.986. In figure 7b are shown
the small and large limit cycles, immediately before and after the canard. As in the
previous examples, the transition from small harmonic oscillations to large relaxation
oscillations occurs when the limit cycle trajectory first touches and then crosses the
inflection line (see Appendix D). For this value of e, the canard transition is
continuous since the configuration around the first crossing point corresponds to that
shown in figure 3a.

For ¢ = 0.01, the value used in earlier studies (Diener 1984; Kaas-Petersen &
Brons 1985), the canard becomes much sharper (figure 7¢). Because the limit cycle
and inflection line take on opposite curvature after the crossing (see figure 3b), the
canard behaviour is now discontinuous. The discontinuity explains why Diener et al.
(1984) were unable to find any middle-sized oscillations even at their highest machine
resolution.
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Figure 7. (a) Steady-state and maximum and minimum values of z as a function of bifurcation
parameter ¢ in the van der Pol system with ¢ = 0.1. (b) Phase plane showing small-amplitude limit
cycle ( , curve (i)) and large-amplitude limit cycle (--, curve (ii)), calculated immediately
before (¢! = 0.9864) and after (¢ = 0.9863) the canard transition. Dotted curves show inflection
line calculated at ¢ = ¢ii. (¢) Same as (b) but with ¢ = 0.01. For curves (i) and (ii), ¢! = 0.99875 and
¢t = ¢ = 0.99874.

Figure 7b, ¢ shows that additional crossings of the inflection line by the limit cycle
trajectory do not result in dramatic changes in behaviour. The onset of canard
behaviour always corresponds to a small limit cycle trajectory touching an inflection
line tangentially ; non-tangent crossings result only in mild changes of curvature.

8. Conclusion

An alternative approach of describing canard behaviour in terms of the inflection
line in the phase plane provides insights into the transition of small-amplitude
oscillations into large relaxation oscillations. The inflection line is the locus of points
where the curvature of any of the possible phase plane trajectories is equal to zero.
The onset of a canard transition occurs when a growing stable or unstable limit cycle
trajectory tangentially touches an inflection line. The crossing coincides with a sharp
change in the amplitude of oscillations. The curvature of the inflection line relative
to that of the trajectory immediately following the crossing determines the
continuity of a canard transition.
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Appendix A. Two-variable model for the EOE reaction

The inflection line for the two-variable model of the oscillatory EOE reaction,
equations (A 1)—(A 4), can be determined by the following expression:

&y

dXZ

— ke (AAY/dX + YdA/dX) +k_,+ ky+ 3k,(Z + X dZ/dX) — 4k, Y dY/dX — k, Y /dX
Ty AY — (k_,+ ko + oy + by Z) X

[ =k, AY + (k_, + ky+ 3k, Z) X — 2k, Y? + ko (Y, — V)]

x [ky(A dY/dX + Y dA/AX) — (k_, + ko + ky) — ky(Z + X dZ/AX)]

X [y AY — (k_y + kg + ko + &, Z) X172 = 0, (A 5)
where
AY _ =y AY + (k_y+ ky+ 3k, 2) X — 2k, Y2+ ky(Y,— Y) (A 6)
dX by AY —(k_y + ko + ky+ k, Z) X ’
dd _ by (ky+ky Y) = key(ky Ay +k_y X)dY/dX AT
dX (ko+k, Y)? ’
A% 2k, Y(ky+ ks +k, X) dY/dX — ky k, V2 A8)
dx (ko + s+ by X)? '

Appendix B. Autocatalator

The inflection line for the two-variable Autocatalator can be found by first
constructing da/dg from equations (B 1) and (B 2):

doo  e(p—a—ap?)

A~ atafr—p (B3)

For d%«/df? = 0, the second-order equation (B 4) is solved:
aa’+ba+c =0, (B 4)
where a= 1+ (1+2uB—p%, (B 5a)
b=—(u—P) (282 +c(1+ B2 ]~ (u+B) (1+Y), (B 5b)
¢ = eplp—p) (L+%) +pp. (B5¢)

Appendix C. Oregonator

The inflection line for the two-variable Oregonator is given by

dy V) e ()]
e e (e e ol | RO
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where dy/dz of (C 6) is obtained from (C 2) and (C 3),
ngf?(fz—y—wy)’ (©6)
dz x—z

and dz/dy of (C7) is obtained from (C 4),

gl_x: 1—x
dy v ((1—y)?+4ay)

Appendix D. Van der Pol oscillator

The inflection line for the van der Pol oscillator can be determined by first
obtaining dx/dy from (D 2) and (D 3):

de  y—g®+a

dy  ele—a) (9

For d%¢/dy? = 0, the second-order equation (D 5) is solved:
Y +ay+b=0, (D 5)
where a = (1—2% (c—x)+2x(1 —32?), (D 6a)
b =¢lc—ux)?+x(l—i?) [(1 —2a?) (c—x)+x(1 —32?)]. (D 6b)
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